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Estimation of Gene Frequency and Test for
Hardy-Weinberg Equilibrium in the HLA
System
by Masaaki Matsuura* and Shinto Eguchit

This paper concerns the testing for Hardy-Weinberg equilibrium and the estimation of gene frequency
in the human leukocyte antigens (HLA) system. An extensive simulation study for both testing and
estimation is given for investigating the performance of the projection method by Eguchi and Matsuura,
which has a closed form, and the method is asymptotically equivalent to the maximum likelihood method.
We compare our projection test statistic with the likelihood ratio test and the single degree of freedom
chi-square test suggested by Nam and Gart. Actual mean square errors of the projection estimator of gene
frequency under the Hardy-Weinberg equilibrium are compared with the maximum likelihood estimator
and some other estimators recently discussed by Nam.

Introduction
The human leukocyte antigen (HLA) system has been

observed, not only in human genetics and anthropology
but also in biostatistics. Farewell and Dahlberg (1) in-
vestigated some statistical methodology including the
analyses for associating particular diseases with some
genotypes in the HLA system. For these statistical
analyses or gene frequency estimations, one of the most
fundamental assumptions is the Hardy-Weinberg law.
Eguchi and Matsuura (2) proposed a projection method
for the testing and estimation problem. The method is
associated with a geometric interpretation similar to
least-square method in the linear regression model. The
key idea is to construct the regression plane, which is
tangent to the (gene frequency) parameter space in the
Hardy-Weinberg equilibrium. Thus, the method is
based on the projection of sufficient statistics onto the
regression plane. The test statistic can be regarded as
the residual sum of squares and the estimator for gene
frequency regarded as the least-square estimator.

This paper describes the structure of HLA data used
in the statistical analysis and gives brief reviews on the
methods used to test the Hardy-Weinberg equilibrium
and estimate gene frequencies in the HLA system. Fur-
thermore, the test statistics and the gene frequency
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estimator given by Eguchi and Matsuura (2) are com-
pared with those either recently proposed or those for-
mally used in the practical fields in a simulation study.
The test statistics that are compared include the ordinal
likelihood ratio statistics and the single degree of free-
dom test statistic proposed by Nam and Gart (3). The
simple Bernstein's method extended by Yasuda and Ki-
mura (4); the gene-counting method developed by Smith
et al. (5-7) and extended by Yasuda and Kimura (4);
and the bias reduced method proposed by Nam (8) are
included for comparing the gene frequency estimators.

Structure of the HLA Data and
Model under the Hardy-Weinberg
Law
The HLA system consists of several linked loci on

chromosome 6. A large number of alleles in the popu-
lation are at each locus, but the complete set of alleles
at a particular locus has not yet been identified. New
loci and alleles have been recognized at the International
HLA Workshop and their names are decided by the
World Health Organization (WHO) Nomenclature Com-
mittee. By 1984 the loci A, B, C, D, DR, DP, and DQ
were recognized [see Albert et al. (9) for all alleles found
at each locus]. Throughout this paper, we consider the
alleles at a fixed locus and treat the phenotypic data.
Using the notation ofYasuda and Kimura (4) and Nam

and Gart (3), m - 1 known alleles (or antigens) at a
given locus are denoted as A1, A2, ..., Am_ 1, and a pool
of unidentified alleles denoted by 0, which is considered
a recessive allele in the generalized ABO-like blood sys-
tem. Since chromosomes are paired, an individual will
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have two alleles. Thus, the possible combinations of
genotypes are AAj, AiO, AjAk, and 00, 1 - i - m -
1, 1 S j - k - m - 1, and the total genotype is m(m
+ 1)/2. The indices i, j, and k are run, as previously
mentioned, and we sometimes omit their ranges.
For the serologically defined antigens (for example

HLA-A, -B, -C, and -DR), typing panels-where the
known antibody corresponding to the antigen Ai for
some i is included-are used for detecting the HLA
type of an individual, which is decided by an antigen-
antibody reaction. The mixed lymphocyte reaction is
used for HLA-D locus. The alleles A1, A2,..., Amr1
are codominant, therefore, if an individual possesses
two distinct antigens Aj and Ak, the phenotype is de-
noted by AjAk, which is identical to the genotype. How-
ever, if only one antigen Ai is detected for a person, it
is not possible to distinguish the genotype AjAi from
the genotype A%O without typing other family members,
so we denote phenotype of this person as Ai. If no an-
tigen is detected, the person can be considered as having
two unknown alleles that are different from the known
alleles Ai, i = 1, 2, . . . , m - 1. In this case the genotype
is referred to as 00 and the phenotype denoted by 0.
We sometimes call the phenotype 0 double blanks. Ac-
cordingly, the total phenotype becomes (m2 - m
+ 2)l2.
There are two possibilities in constructing the gen-

otype AjAk, 1 - j < k - m - 1: one assumes that the
allele Aj comes from the mother and Ak, from the father;
the other is the reverse with the allele Ak coming from
mother and vice versa. According to the Hardy-Wein-
berg equilibrium or random mating, the probabilities of
the genotype AjAk in the population are given by PjPk
+ PkPj = 2P,Pk, 1 - j < k -< m - 1, where pi is the
gene frequency of the codominant allele Ai, 1 - i -im
- 1. Here the frequency of a pool of unknown alleles

mr-1
is denoted by r, so that pPi + r = 1. Similarly,

probabilities of genotypes AjAi, A4O, and 00 are given
by p2i, 2pir and r2, respectively, where i = 1, 2,..., m
- 1. For the phenotypic data the probability of the
phenotype Ai can be taken by merging the probabilities
of the genotypes AjAi and AjO, thus we obtain p2 +
2pir for i = 1, 2, . . ., m - 1. Probabilities of the phen-
otypes AjAk and 0 are the same as those genotypes
AjAk and 00, respectively. In the population of sample
size N, the observed numbers of phenotypes Ai, AjAk,
and 0 are written by ni, n1k, and noo, respectively.
Define nkj = njk, 1 - j < k mm - 1. For the conven-
ience notation, let Gi be the sum of the observations
with the phenotype Ai, that is

m-1

Gi = ni + E nij for i = 1,2, . . . , m-1
jXij

The next section investigates the testing problem based
on the phenotypic data.

Testing the Hardy-Weinberg
Equilibrium
As noted in the "Introduction," the notion of gene

frequency is reasonable only when the population is sub-
ject to the Hardy-Weinberg law. Therefore, if this as-
sumption does not hold, resulting estimates of gene fre-
quencies will be misleading whatever method is used.
Thus, a check of this assumption should be included in
the analysis of gene frequencies.

In a population of sample size N, the counts ni, n1k,
and noo, 1 S i Sm - 1, 1 - j < k - m - 1, respectively,
have a multinomial distribution with cell parameter vec-
tor

'T = (TiT, lTjk, 1ro)1GiGm-1,1Gj<kSm-1,
where 7ro + E -ri + E Trjk = 1. If the population is
subject to the Hardy-Weinberg law, then the vector r
is in the subsurface

HHW = {rrp =

(pf + 2pir, 2pJpki )

o <Pi < 1 ( 1 < i - m - 1),
m-1

O< r < 1, Pi + r=1}

which is the subsurface in the space HI of cell parameter
vectors. Thus the null hypothesis that the population is
under the Hardy-Weinberg law is expressed as H: Tr E
IIHw and the alternatives as K: r e H1-rIHW-

Testing the hypothesis H is usually accomplished by
means of a goodness-of-fit likelihood ratio or Pearson
chi-square statistic with a null distribution character-
ized by chi-square distribution with (m - )(m - 2)/2
degrees of freedom. Let L(wa) be the likelihood of r,
then the likelihood ratio statistic is given by

XLR = 2{log L(wa) - log L(sp*)l
where I is the full maximum likelihood estimator (MLE)
on xn, and p* is the MLE ofp = (Pi, P2, ... pm-_)T under
the Hardy-Weinberg law. Here, it is intractable to ob-
tain the MLE p*, which may need an iteration method.
Note that the minimum chi-square statistic also requires
such an iteration technique. To obtain the MLE itera-
tively, Yasuda and Kimura (4) extended the gene count-
ing method to the generalized ABO-like system. The
gene counting method was devised by Ceppellini, Sin-
iscalco and Smith (5) and develop by Smith (6,7). Using
the gene counting method the estimates at the kth step
are given by

()_Gi p(k-1) ni8~~k)+
ki (nt

Alk) = 2N +(k-1) + 2r(k-1) 12N) (1)

for i= 1,2,...,m - 1.

and
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rn-i

r(k-1) = 1 - E p(k-1).
i=i

Here, the Bernstein estimator extended by Yasuda and
Kimura (4) may be used for the first step, which is given
by

Pi = 1 - 1- (GJI N)
fori= 1,2,...,m- 1.

(2)

and

r= Vi
Nam and Gart (3) suggested another chi-square test

statistic with a single degree of freedom
2

XD = D2 I V(D)
where

D = 1 - E Pi
i=l

+ r

and V(D) is the variance of D and is given by

V(D)= [ (E P,̂
( ^ )i2]

When m = 3, or the ABO system, XZ reduces to the
statistic given by Stevens (10). Though the statistic X2D
does not require the iterative manner, Eguchi and Mat-
suura (2) theoretically pointed out that the statistic X2D
essentially causes an acceptance region outside fLHW
whatever significance level one chooses when m > 3.
This point will be observed in the simulation study here.
Eguchi and Matsuura (2) introduced a closed form chi

square statistic

XPR =NO 5H
where T= (012, 013 0an-2 m with fjk ?jkl
2N - PjPk 1 j < k S m - 1, and X6 is the Fisher
information matrix of 0 when evaluated at ', and is
given in Appendix 1. The test statistic X2PR has a closed
representation of a residual sum of squares by a pro-
jection mapping onto the estimated regression plane.
The derivation is based on the maximum likelihood
method and closely related to a standard regression
theory.

Estimation of Gene Frequencies
The simple Bernstein's estimator obtained by Eq. (2)

has been widely used for the generalized ABO-like sys-
tem. However, the sum of these estimates (i.e., I +

r) is not necessarily equal to one. Also, according to the
simple Bernsteins's method, the estimate of the reces-
sive gene frequency has the negative bias, (11). Fur-

thermore, the simple Bernstein's estimator is generally
inefficient when m - 3.
Smith (7) gave an alternative estimator of the reces-

sive gene frequency defined by
rn-l

r= 1 - > i

in which case the sum of estimates is equal to one and
V(r ) - V(r), but ro may yield negative values. Yasuda
and Kimura (4) proposed the so-called adjusted Bern-
stein's estimator

Pi = pi(l + D/2) for i = 1, 2,..., m - 1,
and

r= (r + D/2)(1 + D12),
where D is defined in Eq. (3). Here I p* + r =1-
D214, and r* may also yield negative values. Nam and
Gart (3) suggested the so-called modified Bernstein's
estimator

p'i = Pi / (1 -D/2) for i = 1,2,.. ., m- 1

and

r' (r + D12) / (1 - D12)
and showed that the adjusted and modified estimators
are not only inefficient, but also both of them have
asymptotic variances larger than the simple Bernstein's
estimator. They also investigated the problem that the
method with a single gene-counting iteration, defined
in Eq. (1) using the modified Bernstein's estimator as
an initial step, leads to a nearly efficient estimator.
Haldane (11) recognized that the Bernstein's reces-

sive gene estimator is negatively biased and suggested
the corrected version:

r = V(noo + 0.25) / (N + 0.25)

Also, Nam (8) recently investigated the bias of the sim-
ple Bernstein's method and considered the reduction of
its bias in the generalized ABO-like system. Removing
the major bias term, he obtained a bias reduced Bern-
stein estimator as

pi= 1 - V - G/(N + 0.25)
fori= 1,2,...,m-1
for the codominant allele frequencies. For the recessive
allele frequency, the form of the estimator is identical
to Haldane's estimator. Nam (8) also suggested another
estimator called the bias reduced Smith's estimator,
which is given by the equation

r= 1 -
p

i=l

and he showed that this estimator is best used in achiev-
ing the smallest absolute bias among the simple Bern-
stein's, Smith's and Haldane's estimators.
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Regarding the inference procedure based on the like-
lihood function, Fisher (12) introduced the joint maxi-
mum likelihood estimation of gene frequencies; Rao (13)
also discussed the estimation. Farewell (14) gave the
details of its application to HLA data and used some
convenient reparametrizations to improve the rate of
convergence [see also Farewell and Dahlberg (1)]. Fur-
thermore, Gart and Nam (15) showed the detailed de-
scription for obtaining the MLEs using the scoring
method discussed by Rao (16). They also showed that
the MLEs of codominant allele frequencies are given by

Pi = (Gi + ni)I2N fori = 1,2,... - 1,
under the assumption that r = 0. As noted in the pre-
vious section, by using the gene-counting method de-
fined in Eq. (1), the estimates obtained that are well
converged are equivalent to the MLEs, which are fully
efficient estimators, but the estimates require the it-
erative calculations.
Eguchi and Matsuura (2) suggested the noniterative

estimator using the projection mapping and showed that
the projection estimates are asymptotically equivalent
to the MLEs. The projection estimates are obtained by

P = (X -()1g£ b) T9
where p = Q i,P2... Pm- i)T, and f = 1 - I p. Here
X,1~9 (p5) and X are given in Appendix 2. From the
form of the projection estimator, p can be regarded as
the least square estimator in the regression model

Y = Xp + F

with Y = S½ , X = 9½X, and independent standard
normal errors F, where Y, is given in Appendix 1.

Simulation Study
Simulation Procedure
For the test statistics X2PR, X2LR and X2D, the actual

Type I error (the size of test) and the powers are com-
pared in a simulation study. We also investigate the
actual squared errors of the projection method, gene
counting method, bias reduced method and the simple
Bernstein's method.

In the simulation for fixed N and m, our procedure
for the data generating process under the Hardy-Wein-
berg equilibrium is taken as follows:

a) To determine the true gene frequencies, m - 1
random numbers are taken from the uniform distri-
bution U(0,1) and are arranged in ascending of mag-
nitude such that u1 <U2 < ... < um-1. Define r =
U1, Pi = Ui+ - Ui fori = 1,2,..., m - 1, and pm-1
= 1 - umi1. We regard the set (r,P1, ... , Pm-i) as
the true gene frequencies. Note that we omit the
frequency set if r > 0.5, since such a situation is rate
in practice; we also omit the one with pi < 0.005 for
some i, because the Gi is likely to be zero.

b) To determine the genotype of an individual, we
generate a pair of random numbers (u;, u2) from

U(O,1) and define ur = 1. If u; lies in a interval
between 0 and u1, namely u; e [0, u1], we regard the
individual as having the recessive allele 0, and if u;
E (ui, ui 1), then we consider that the individual has
the codominant allele Ai for some i = 1, 2,..., m -
1. Note that the length of the interval (ui, ui+1) is
equivalent to the true gene frequency pi. Similarly,
we determine the other phenotype of this individual
using u2. Therefore, we can decide the phenotype of
this subject according to the genotype.

c) For fixed sample size N, step b is iterated N
times and we count the observed numbers noo, ni, n,k
for 1 - i - m - 1 and 1 - i < j - m - 1. If Gi =
0 for some i, we omit the data set from the simulation.

d) We repeat the process from a to c 5000 times
for fixed N and m.
For the situations where the Hardy-Weinberg law

equilibrium does not hold, we change the steps a and b
as follows:

a) Since the possible number of phenotypes is 1 +
m(m - 1)12, m(m - 1)/2 random numbers are taken
from U(0,1) and arranged in ascending of magnitude
such that v, < V2 <, ... ,< Vm(m1)12. We define -no
= V1l 1T1 = V2 - V1 ... v Tm-3,m-1 = Vm(m-1)/2-1 -

Vm(m1)X2 and 7rm-2,m-l = 1 - Vm(m1l)/2. We regard these
sTo, wi, 1 ti < m - 1, Tjk,1 < j < k < m -1as
the cell probabilities of the multinomial distribution
of sample size N.

b) If a random number v* following U(0, 1) lies in a
interval [0, v1], we assume that the subject has the
phenotype 0. If v* E (vi+1 - vi), the subject has
phenotype Ai. Similarly, the subject has the pheno-
type A1k, if v* falls in the corresponding interval of
ITjk, 1 j < k - m - 1. The remainder is the same
as the step (b). Note that true gene frequencies and
true cell probabilities are not fixed, and these are
changed in each replication in order to examine the
numerous situations.

Results of Testing the Hardy-Weinberg
Equilibrium
The results on sizes, based on the percentage of times

the computed test statistic exceeded the 0.05 level crit-
ical values, are presented in Table 1 for m - 1 = 5 and
10. The results based on the 0.10 critical value are also
included in Table 1.
For the test statistic based on the projection method,

the actual Type I errors are less than nominal size 0.05
for m - 1 = 5 and for m - 1 = 10 with N > 500; the
test statistic becomes conservative as the sample size
becomes large. The likelihood ratio test seems to be
somewhat liberal for the range of N between 250 and
2500, which is the usual sample size in practical fields.
And this test is too conservative for m - 1 = 10 and
N < 75. For the one degree of freedom test statistic,
the actual Type I error is larger than 0.05. Therefore
this test seems to be liberal, regardless of sample size.
To investigate the situation with no double blanks,

that is noo = 0, under the Hardy-Weinberg law, we
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Table 1. Percentage of times that H was rejected at a = 0.05 and 0.10 level when the H was correct (ifEHw); 5000 replicates.

m-1
5

10

N
20
50
100
250
500

1,000
2,500
5,000
10,000

50
75
100
250
500

1,000
2,500
5,000
10,000

X PR
4.0
4.6
4.4
4.0
4.7
3.9
3.9
3.8
3.8

6.3
6.7
6.3
6.2
4.9
4.5
3.7
3.6
3.5

oa = 0.05
2

X LR
3.8
5.7
5.5
5.6
6.2
5.0
5.2
5.2
4.9

1.0
2.4
3.9
6.8
6.6
6.3
6.1
5.0
4.6

X D
7.0
7.3
6.7
6.0
6.0
5.8
5.8
5.4
5.3

5.1
5.3
6.4
6.1
6.2
6.1
6.0
5.7
5.7

X PR
7.1
8.3
8.3
8.1
9.0
7.3
8.5
7.9
7.7

10.0
10.4
10.1
9.9
8.8
8.1
8.1
7.6
7.4

a = 0.10
2

X LR
9.4

11.4
11.2
10.8
11.6
9.9

10.3
10.0
9.4

2.8
6.1
8.1
13.4
13.2
12.5
11.5
10.2
9.4

X D

11.3
12.1
12.0
11.0
10.8
11.2
10.9
10.7
10.6

9.5
9.9

11.3
10.8
11.7
11.4
12.1
10.3
10.6

Table 2. Percentage of times that H was rejected at a = 0.05 and 0.10 when the H was correct (iruFHw) and noo = 0; 5000 replicates.

a = 0.05 oa = 0.10
m-1 N X PR XLR X D XPR X LR X D

5 100 2.8 3.9 1.4 5.5 8.6 3.2
250 3.6 4.1 4.0 6.3 8.6 8.7
500 3.6 5.0 10.1 6.7 10.0 17.3
1000 3.1 5.9 25.7 6.7 12.0 35.0

10 100 6.0 3.3 0.5 9.5 7.1 1.8
250 5.9 5.7 2.4 9.2 11.8 6.7
500 4.6 7.1 9.8 8.6 12.9 18.5
1000 3.5 6.8 27.4 7.2 13.3 37.3

Table 3. Percentage of times that H was rejected at a = 0.05
when the H was not correct (rilH); 5000 replicates.

m-1 N X PR X LR X D

5 100 98.0 99.0 56.0
250 100.0 100.0 71.4
500 100.0 100.0 80.4
1000 100.0 100.0 86.1

10 100 98.9 99.8 27.9
250 100.0 100.0 52.1
500 100.0 100.0 64.8
1000 100.0 100.0 74.6

restrict the true recessive gene frequency to be less
than 0.05 in step (b) and picked up only the data set
with noo = 0 in step (c) until the number of data set
attains 5000. This situation sometimes holds, as noted
by Smouse and Williams (17), Gart and Nam (18), and
Nam and Gart (19,20). The results are given in Table 2
form - 1 = 5 and 10 andN = 100, 250, 500, and 1000.
In this restricted situation theoretical behavior has not
been examined. But the simulation shows that the actual
Type I error decreases for the projection method, as
compared to Table 1 with the same sample size. The
similar behavior can be seen for the likelihood ratio test
when m - 1 = 5 and N < 500, and m - 1 = 10 and

N < 250; conversely, the Type I error tends to increase
for a moderate large sample size. For test statistics with
one degree of freedom, such behavior like the likelihood
ratio test becomes too strong.

Table 3 presents the percentage of times that the null
hypothesis H was rejected at the nominal 0.05 level
when a data set follows a multinomial distribution with
cell probabilities ur e Hl. Results for the projection
method and the likelihood ratio method are almost
evenly matched. However, the chi-square test X2D with
a single degree of freedom is likely to accept the null
hypothesis. Thus, the power of this test can be consid-
ered as less powerful than the other two tests. This
result may confirm the theoretical behavior of X2D that
was investigated by Eguchi and Matsuura (2). Nam and
Gart (20) also showed the inefficiency of the statistic
X2D in another testing problem.

Results of Estimation of Gene Frequency
To compare several estimators we use the measure

of actual mean square effort (MSE) defined by
s

MSE = - I (ii(s) - p(8))T (j(s) _ p())s8=1
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Table 4. Actual mean square error under the Hardy-Weinberg law; 5000 replicates.

m-1 N (p~k,f) (pk rk)rPi,( ,rf)() ,li)
5 100 0.00466 0.00445 0.00644 0.00498 0.00561 0.00494

250 0.00183 0.00175 0.00253 0.00195 0.00226 0.00194
500 0.00092 0.00089 0.00127 0.00098 0.00116 0.00098

1,000 0.00047 0.00045 0.00064 0.00050 0.00059 0.00050
2,500 0.00019 0.00018 0.00025 0.00020 0.00024 0.00020

10 100 0.00483 0.00460 0.00677 0.00499 0.00593 0.00496
250 0.00193 0.00186 0.00275 0.00199 0.00244 0.00198
500 0.00096 0.00092 0.00140 0.00099 0.00125 0.00099

1,000 0.00048 0.00046 0.00070 0.00050 0.00064 0.00050
2,500 0.00019 0.00019 0.00028 0.00020 0.00026 0.00020

Table 5. Actual mean square error under the Hardy-Weinberg law with no = 0; 5000 replicates.

m-1 N)Pi(pk,rPkI)) (PiPi#) ( o) (pt ,Ir) (Pti ,Po)
5 100 0.00478 0.00400 0.00495 0.00535 0.00497 0.00527

250 0.00192 0.00165 0.00244 0.00210 0.00189 0.00209
500 0.00097 0.00085 0.00161 0.00104 0.00102 0.00104

1,000 0.00049 0.00044 0.00119 0.00052 0.00069 0.00052
10 100 0.00482 0.00445 0.00518 0.00505 .00535 0.00501

250 0.00193 0.00180 0.00251 0.00202 0.00205 0.00201
500 0.00098 0.00092 0.00162 0.00102 0.00110 0.00101

1,000 0.00049 0.00046 0.00119 0.00050 0.00071 0.00050

where p(') is the vector of certain estimates of true gene
frequencies p(") = (Pl(8), P2(8) .. .. Pm(-i1 in the sth
simulation with replications S = 5000. Table 4 presents
the comparison of MSE based on the several methods
of estimation under the Hardy-Weinberg equilibrium.
For the situation with no double blanks under the
Hardy-Weinberg law, the results are shown in Table 5.
Estimates based on the gene-counting method have
small MSE compared to other estimates for all sample
sizes and for the number of alleles in Tables 4 and 5.
The MSE based on the projection method is slightly
larger than that of MLE, but the difference in MSE
becomes smaller as the sample size becomes larger.

Appendix 1
The Fisher information matrix of 0 evaluated at ',

Y, is given by

22
G _ MT ct1= -22 a 12 a11 412

where j11, Y12, and 22are submatrices of the Fisher
information matrix of (Xi, 0),

A

written by

= 1(9i2Y2)-22 JT y-J
(=J*T Y J*)

Here J. is the inverse of Jacobi matrix of a mapping up
of zr = (1Ti, lTjk) into T by

'r = up (a) = (1 - -GiY INZ, 12/2ljk)ij,k'

and is given by

4 = -(1* - D-1
0 -t2T)

where f = (m - 2)(m - 1)/2,

AT = * **,
1

I

7-2

Io ... I o
1, . . . , 1

ltn 3

... 1

and

D = diag(i ) 1

.4 is
by

the Jacobi matrix of a mapping i4 of (p, 0) into T

4(,0) = (Pi, PjPk)isj,k
and is given by

J ( "I-+(_ImO-1
ka(p,o) kAp Ifj

where f = (m - 1)(m - 2)/2 and

3P24 P30 0Pm- |
0, 0

* * *
T Pi P3, P4, * ,Pm-I

Ap= 2 Pi. P2
0 ... Pm-2 Pm-i

Pm-3 0 Pm-1
Pi P2 0 Pm-3 Pm-2

And Y, is the information matrix of i given by

154



GENE FREQUENCY AND HARDY-WEINBERG EQUILIBRIUM IN HLA SYSTEM 155

. = (diag r)rf + 1 uT
'MO

where I = (1,...
Here we use the consistent estimator ur and nTOc instead
of r and aro, respectively, to prevent the some elements
of .Y having infinite values. The consistent estimator
rsc is given by

rrC = (Vi + 2iric, 2Ijgk)ij,k
and

rA ,ifIPi< 1
=c t 1/2 ,ifp<1

ro + ro + (=roc), otherwise.

m-1

Here rO = 1 - > Pi, the Smith's estimator. The de-
i=l

rivation of rc is based on the maximization of p(r) under
ro < 0, defined by

p(r) = 2r exp[- 2 (r - ro)1.
Here 2r can be considered as prior density of r. And
the rOc have the properties as follows: (a) ?Oc > 0 and
roc > oro for any AO,(b) if #O is fixed and N oo, then

m-l
rOc = ro when I Pi < 1, andO = O when Pip¢ 1,

and (c) #Oc and #O have the same asymptotic distribution.
Therefore, the rOC is consistent since r1O is consistent.
Thus, we use the consistent estimator ITOc defined
by f2c.

Appendix 2
Using the notation in Appendix 1, Xp- is defined by

Here Ap is same as Ap with the elements Pj instead of
pi. And = (Pi, 1/2½ jk)ij,k. Considering the

then we can obtain S- (j()

=(ImiAiT) y(ImiO)
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